
Study Guide for Linear Algebra – Exam 2

Term Definition

Vector Space A Vector Space is a nonempty set V of objects, on which are defined two
operations, called addition and multiplication by scalars (real numbers), subject
to the ten axioms (or rules) listed below. The axioms must hold for all vectors
u, v, and w in V and for all scalars c and d.

1. The sum of u and v, denoted by u + v, is in V.
2. u + v = v + u
3. ( u + v ) + w = u + ( v + w )
4. There is a zero vector 0 in V such that u + 0 = u
5. For each u in V, there is a vector, −u in V such that u + (−u) = 0
6. The scalar multiple of u by c, denoted by cu, is in V
7. c( u + v ) = cu + cv
8. ( c + d )u = cu + dv
9. c( du ) = ( cd )u
10. 1u = u

Subspace A subspace of a vector space V, is a subset H of V that has three properties:

a. The zero vector of V is in H
b. H is closed under vector addition. That is for u and v in H, the sum u +

v is in H
c. H is closed under multiplication by scalars. That is, for each u in H and

each scalar c, the vector cu is in H
 

Null space The null space of an m x n matrix A, written as Nul A, is the set of all solutions
to the homogeneous equation Ax = 0. In set notation:

     Nul A = { x : x is in Rn and Ax = 0 }

Column space The column space of an m x n matrix A, written Col A, is the set of all linear
combinations of the columns of A. If A = [ a1 ,… , an ], then

     Col A = Span{ a1 ,… , an }

Linear transformation A linear transformation T from a vector space V into a vector space W is a
rule that assigns to each vector x in V a unique vector T( x ) in W, such that

i. T( u + v ) = T( u ) + T( v )     for all u, v in V, and
ii. T( cu ) = cT( u )        for all u in V and all scalars c



Linear independence An indexed set of vectors { v1 ,… , vp } is said to be linearly independent if the
vector equation 

     c1v1 + c2v2 + …  + cpvp = 0

has only the trivial solution c1 = 0 ,… , cp = 0

Linear dependence An indexed set of vectors { v1 ,… , vp } is said to be linearly dependent if the
vector equation 

     c1v1 + c2v2 + …  + cpvp = 0

has a nontrivial solution, that is, if there are some weights, c1 ,… , cp, not all
zero such that the equation holds …  

Linear dependence
relation

…  In such a case ( above ), this is called a  linear dependence relation
among v1 ,… , vp

Basis Let H be a subspace of a vector space V. An indexed set of vectors B = { b1

,… , bp } in V is a basis for H if

i. B is a linearly independent set, and
ii. the subspace spanned by B coincides with H; that is

     H = Span{ b1 ,… , bp }

Coordinate vector Suppose the set B = { b1 ,… , bp } is a basis for V and x is in V. The
coordinates of x relative to the basis B ( or the B−coordinates of x ) are
the weights c1 ,… , cn such that x = c1b1 +… + cnbn

Dimension If V is spanned by a finite set, it is said to be finite−dimensional and the
dimension of V, written as dim V, is the number of vectors in the basis for V. 

The dimension of the zero space { 0 }, is defined to be zero.

If V is not spanned by a finite set, it is said to be infinite−dimensional

Rank The rank of A is the dimension of the column space of A

Change of coordinates
matrix

PB = [ b1 b2 …  bn ] = x = PB [ x ]B



Eigenvalue A scalar λ is called an eigenvalue of A if there is a nontrivial solution x of Ax =
λx; such an x is called an eigenvector corresponding to λ

Eigenvector An eigenvector of an n x n matrix A is a nonzero vector x such that Ax = λx
for some scalar λ

Eigenspace The set of all solutions to:
   
     ( A − λI )x = 0 I

is the null space of ( A − λI ). This is called the Eigenspace of A corresponding
to λ

Diagonalizable A square matrix A is said to be diagonalizable if A is a similar to a diagonal
matrix, that is:

     A = PDP−1 

for some invertible matrix P and some diagonal matrix D

Similar matrices We say that A is similar to B if there is an invertible matrix P such that PAP−1 =
B, or A = PBP−1

Chapter.ThmNum theorem

3.2 If A is a triangular matrix, the det A is the product of the entries on the main
diagonal of A.

3.3
row ops

Let A be a square matrix

a. If multiple of one row of A is added to another row to produce a matrix
B, then det A = det B

b. If two rows of A are interchanged to produce B, then det B = −det A
c. If one row of A is multiplied by k to produce B, then det B = k*det A

3.4 A square matrix A is invertible if and only if det A != 0

3.5 If A is an n x n matrix, then det AT = det A



3.6 
multiplicative property

If A and B are n x n matrices, then det AB = ( det A )( det B )

3. 
Formula for det A as a
product of pivots

               ( −1 )r * ( product of pivots in U ) ; when A is invertible
det A
               0 ; when A is not invertible

4.1 If v1 ,… , vp are in a vector space V, then Span{ v1 ,… , vp } is a subspace of V

4.2 The null space of an m x n matrix A is a subspace of Rn, Equivalently, the set
of all solutions to a system Ax = 0 of m homogeneous linear equations in n
unknowns is a subspace or Rn

PROOF:

Nul A is a subset of Rn because A has n columns. Show that Nul A satisfies
the three properties of subspaces:

1. Of course 0 is in Nul A  − let u and v represent two vectors in Nul A,
then Au = 0 and Av = 0

2. A( u + v ) = Au + Av = 0 + 0 = 0 ( using a property of matrix
multiplication ), and thus closed under vector addition

3. A( cu ) = c( Au ) = c( 0 ) = 0 ( where c is any scalar ), which shows
that cu is in Nul A, thus, Nul A is a subspace of Rn

4.3 The column space of an m x n matrix A is a subspace of Rn

4.4 An indexed set { v1 ,… , vp } of two or more vectors, with v1 != 0, is linearly
dependent if and only if some v j ( with j > 1 ) is a linear combination of the
preceding vectors v1 ,… , v j−1

4.5 
spanning set theorem

Let S = { v1 ,… , vp } be a set in V and let H = Span{ v1 ,… , vp }.

a. If one of the vectors in S—say , vk—is a linear combination of the
remaining vectors in S, then the set formed from S by removing vk still
spans H

b. If H != { 0 }, some subset of S is a basis for H

4.6 The pivot columns of a matrix A form a basis for Col A



4.7 
unique representation
theorem

Let B = { b1 ,… , bn } be a basis for a vector space V. Then for each x in V,
there exists a unique set of scalars c1,… ,cn such that
     
     x = c1b1 +… + cnbn

PROOF:

Since B spans V, there exists scalars such that x = c1b1 +… + cnbn holds true.

Suppose x also has the representation:

     x = d1b1 +… + dnbn

for scalars d1 ,… , dn. Then subtracting, we have:

     0 = x – x = ( c1 – d1 )b1 +… + ( cn − dn )bn

Since B is linearly independent, the weights in the second equation must all be
zero. That is, cj = dj for 1 <= j <= n

4.8 Let B = { b1 ,… , bn } be a basis for a vector space V. Then the coordinate
mapping x |−> [ x ]B is a one−to−one linear transformation from V onto Rn.

4.9 The vector space V has a basis B = { b1 ,… , bn }, then any set in V containing
more than n vectors must be linearly dependent

4.10 If a vector space V has a basis of n vectors, then every basis of V must consist
of exactly n vectors
 

4.12
Basis Theorem

Let V be a p−dimensional vector space, p >= 1. Any linearly independent set of
exactly p elements in V is automatically a basis for V. Any set of exactly p
elements that spans V is automatically a basis for V.

4.13 If two matrices A and B are row equivalent, then their row spaces are the
same. If B is in echelon form, the nonzero rows of B form a basis for the row
space of A as well as B

4.14
The rank theorem

The dimensions of the column space and the row space of an m x n matrix A
are equal. This common dimension, the rank of A, also equals the number of
pivot positions in A and satisfies the equation:

     rank A + dim Nul A = n



IMT −  cont’d Let A be an m x n matrix. Then the following statements are each equivalent to
the statement that A is an invertible matrix.

m. The columns of A form a basis for Rn.
n. Col A = Rn

o. dim Col A = n
p. rank A = n
q. Nul A = { 0 }
r. dim Nul A= 0

5.1 The eigenvalues of a triangular matrix are the entries on its main diagonal.

IMT – the END!! Let A be an n x n matrix. Then A is invertible if and only if:

s. The number 0 is not an eigenvalue of A

5.2 If v1 ,… , vr are eigenvectors that correspond to distinct eigenvalues λ1 ,… , λr of
an n x n matrix A, then the set { v1 ,… , vr } is linearly independent

5.3
Properties of
determinants

Let A and B be n x n matrices.

a. A is invertible if and only if det A != 0
b. det AB = ( det A )( det B )
c. det AT = det A
d. If A is triangular, then det A is the product of the entries on the main

diagonal of A
e. A row replacement operation on A does not change the determinant. A

row interchange changes the sign of the determinant. A row scaling
also scales the determinant by the same as the scalar factor

5.4 If n x n matrices A and B are similar, then they have the same characteristic
polynomial and hence the same eigenvalues ( with the same multiplicities )

5.5
The digitalization
theorem

An n x n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

In fact, A = PDP−1, with D a diagonal matrix, if and only if the columns of P are
n linearly independent eigenvectors of A. In this case, the diagonal entries of D
are the eigenvalues of A that correspond, respectively, to the eigenvectors in
P.

5.6 An n x n matrix with n distinct eigenvalues is diagonalizable



5.7 Let A be an m x n matrix whose distinct eigenvalues are λ1 ,… , λp

a. For 1 <= k <= p, the dimension of the Eigenspace for λk is less than or
equal to the multiplicity of the eigenvalue λk

b. The matrix A is diagonalizable if and only if the sum of the dimensions
of the distinct eigenspaces equals n, and this happens if and only if the
dimension of the eigenspace for each λk equals the multiplicity of λk

c. If A is diagonalizable and Bk is a basis for the eigenspace
corresponding to λk for each k, then the total collection of vectors in the
sets B1 ,… , B1 forms an eigenvector basis for Rn


