Study Guide for Linear Algebra – Exam 2

Term	Definition
Vector Space	A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below. The axioms must hold for all vectors u , v , and w in V and for all scalars c and d. 1. The sum of u and v , denoted by $\mathbf{u} + \mathbf{v}$, is in V. 2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ 4. There is a zero vector 0 in V such that $\mathbf{u} + 0 = \mathbf{u}$ 5. For each u in V, there is a vector, $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = 0$ 6. The scalar multiple of u by c, denoted by c u , is in V 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ 8. $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{v}$ 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$ 10. $1\mathbf{u} = \mathbf{u}$
Subspace	 A subspace of a vector space V, is a subset H of V that has three properties: a. The zero vector of V is in H b. H is closed under vector addition. That is for u and v in H, the sum u + v is in H c. H is closed under multiplication by scalars. That is, for each u in H and each scalar c, the vector cu is in H
Null space	The null space of an m x n matrix <i>A</i> , written as Nul <i>A</i> , is the set of all solutions to the homogeneous equation $A\mathbf{x} = 0$. In set notation: Nul $A = \{ \mathbf{x} : \mathbf{x} \text{ is in } \mathbf{R}^n \text{ and } A\mathbf{x} = 0 \}$
Column space	The column space of an m x n matrix <i>A</i> , written Col <i>A</i> , is the set of all linear combinations of the columns of <i>A</i> . If $A = [\mathbf{a}_1,, \mathbf{a}_n]$, then Col $A = \text{Span}\{\mathbf{a}_1,, \mathbf{a}_n\}$
Linear transformation	A linear transformation <i>T</i> from a vector space <i>V</i> into a vector space <i>W</i> is a rule that assigns to each vector x in <i>V</i> a unique vector $T(\mathbf{x})$ in <i>W</i> , such that i. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in <i>V</i> , and ii. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all \mathbf{u} in <i>V</i> and all scalars <i>c</i>

Linear independence	An indexed set of vectors { \bm{v}_1 ,, \bm{v}_p } is said to be linearly independent if the vector equation
	$C_1\mathbf{v}_1 + C_2\mathbf{v}_2 + \ldots + C_p\mathbf{v}_p = 0$
	has only the trivial solution $c_1 = 0,, c_p = 0$
Linear dependence	An indexed set of vectors { v_1 ,, v_p } is said to be linearly dependent if the vector equation
	$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_p\mathbf{v}_p = 0$
	has a nontrivial solution, that is, if there are some weights, c_1, \ldots, c_p , not all zero such that the equation holds
Linear dependence relation	In such a case (above), this is called a $~$ linear dependence relation among \bm{v}_1 ,, \bm{v}_p
Basis	Let <i>H</i> be a subspace of a vector space <i>V</i> . An indexed set of vectors $B = \{ \mathbf{b}_1, \dots, \mathbf{b}_p \}$ in <i>V</i> is a basis for <i>H</i> if
	i. <i>B</i> is a linearly independent set, and
	ii. the subspace spanned by <i>B</i> coincides with <i>H</i> ; that is $H = \text{Span}\{\mathbf{b}_1, \dots, \mathbf{b}_p\}$
Coordinate vector	Suppose the set $B = \{ \mathbf{b}_1,, \mathbf{b}_p \}$ is a basis for <i>V</i> and x is in <i>V</i> . The coordinates of x relative to the basis <i>B</i> (or the <i>B</i>-coordinates of x) are the weights $c_1,, c_n$ such that $\mathbf{x} = c_1 \mathbf{b}_1 + + c_n \mathbf{b}_n$
Dimension	If <i>V</i> is spanned by a finite set, it is said to be finite–dimensional and the dimension of <i>V</i> , written as dim <i>V</i> , is the number of vectors in the basis for <i>V</i> .
	The dimension of the zero space { 0 }, is defined to be zero.
	If V is not spanned by a finite set, it is said to be infinite-dimensional
Rank	The rank of <i>A</i> is the dimension of the column space of <i>A</i>
Change of coordinates	$P_{B} = [\mathbf{b}_{1} \mathbf{b}_{2} \dots \mathbf{b}_{n}] = \mathbf{x} = P_{B} [\mathbf{x}]_{B}$

Eigenvalue	A scalar λ is called an eigenvalue of <i>A</i> if there is a nontrivial solution x of <i>A</i> x = λ x ; such an x is called an <i>eigenvector</i> corresponding to λ
Eigenvector	An eigenvector of an n x n matrix A is a nonzero vector x such that A x = λ x for some scalar λ
Eigenspace	The set of all solutions to: $(A - \lambda I)\mathbf{x} = 0$ I
	is the null space of ($A-\lambda I$). This is called the $\textbf{Eigenspace}$ of A corresponding to λ
Diagonalizable	A square matrix A is said to be diagonalizable if A is a similar to a diagonal matrix, that is: $A = PDP^{-1}$
	for some invertible matrix <i>P</i> and some diagonal matrix <i>D</i>
Similar matrices	We say that A is similar to B if there is an invertible matrix P such that $PAP^{-1} = B$, or $A = PBP^{-1}$

Chapter.ThmNum	theorem
3.2	If A is a triangular matrix, the det A is the product of the entries on the main diagonal of A.
3.3 row ops	 Let A be a square matrix a. If multiple of one row of A is added to another row to produce a matrix B, then det A = det B b. If two rows of A are interchanged to produce B, then det B = -det A c. If one row of A is multiplied by k to produce B, then det B = k*det A
3.4	A square matrix A is invertible if and only if det $A = 0$
3.5	If A is an n x n matrix, then det $A^{T} = \det A$

3.6 multiplicative property	If A and B are n x n matrices, then det $AB = (\det A)(\det B)$
3. Formula for det A as a product of pivots	det $A $ $\begin{cases} (-1)^r * (product of pivots in U) ; when A is invertible \\ 0 ; when A is not invertible \end{cases}$
4.1	If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in a vector space V, then Span{ $\mathbf{v}_1, \dots, \mathbf{v}_p$ } is a subspace of V
4.2	The null space of an m x n matrix A is a subspace of \mathbf{R}^n , Equivalently, the set of all solutions to a system $A\mathbf{x} = 0$ of m homogeneous linear equations in n unknowns is a subspace or \mathbf{R}^n
	PROOF:
	Nul A is a subset of \mathbf{R}^n because A has n columns. Show that Nul A satisfies the three properties of subspaces:
	 Of course 0 is in Nul A - let u and v represent two vectors in Nul A, then Au = 0 and Av = 0 A(u + v) = Au + Av = 0 + 0 = 0 (using a property of matrix multiplication), and thus closed under vector addition A(cu) = c(Au) = c(0) = 0 (where c is any scalar), which shows that cu is in Nul A, thus, Nul A is a subspace of Rⁿ
4.3	The column space of an m x n matrix A is a subspace of \mathbf{R}^n
4.4	An indexed set { \mathbf{v}_1 ,, \mathbf{v}_p } of two or more vectors, with \mathbf{v}_1 != 0, is linearly dependent if and only if some \mathbf{v}_j (with $j > 1$) is a linear combination of the preceding vectors \mathbf{v}_1 ,, \mathbf{v}_{j-1}
4.5 spanning set theorem	 Let S = { v₁,, v_p } be a set in V and let H = Span{ v₁,, v_p }. a. If one of the vectors in S—say , v_k—is a linear combination of the remaining vectors in S, then the set formed from S by removing v_k still spans H b. If H != { 0 }, some subset of S is a basis for H
4.6	The pivot columns of a matrix A form a basis for Col A

4.7 unique representation theorem	Let $B = \{ \mathbf{b}_1, \dots, \mathbf{b}_n \}$ be a basis for a vector space <i>V</i> . Then for each x in <i>V</i> , there exists a unique set of scalars c_1, \dots, c_n such that
	$\mathbf{x} = c_1 \mathbf{b}_1 + \ldots + c_n \mathbf{b}_n$
	PROOF:
	Since <i>B</i> spans <i>V</i> , there exists scalars such that $\mathbf{x} = c_1 \mathbf{b}_1 + + c_n \mathbf{b}_n$ holds true.
	Suppose \mathbf{x} also has the representation:
	$\mathbf{x} = d_1 \mathbf{b}_1 + \ldots + d_n \mathbf{b}_n$
	for scalars d_1, \ldots, d_n . Then subtracting, we have:
	$0 = \mathbf{x} - \mathbf{x} = (c_1 - d_1)\mathbf{b}_1 + \ldots + (c_n - d_n)\mathbf{b}_n$
	Since <i>B</i> is linearly independent, the weights in the second equation must all be zero. That is, $c_j = d_j$ for $1 \le j \le n$
4.8	Let $B = \{ \mathbf{b}_1, \dots, \mathbf{b}_n \}$ be a basis for a vector space <i>V</i> . Then the coordinate mapping $\mathbf{x} \mid -> [\mathbf{x}]_B$ is a one-to-one linear transformation from <i>V</i> onto \mathbf{R}^n .
4.9	The vector space <i>V</i> has a basis $B = \{ \mathbf{b}_1, \dots, \mathbf{b}_n \}$, then any set in <i>V</i> containing more than <i>n</i> vectors must be linearly dependent
4.10	If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors
4.12 Basis Theorem	Let V be a p -dimensional vector space, $p \ge 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.
4.13	If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as B
4.14 The rank theorem	The dimensions of the column space and the row space of an m x n matrix <i>A</i> are equal. This common dimension, the rank of <i>A</i> , also equals the number of pivot positions in <i>A</i> and satisfies the equation:

IMT – cont'd	Let <i>A</i> be an m x n matrix. Then the following statements are each equivalent to the statement that <i>A</i> is an invertible matrix. m. The columns of <i>A</i> form a basis for \mathbf{R}^n . n. Col $A = \mathbf{R}^n$ o. dim Col $A = n$ p. rank $A = n$
	q. Nul $A = \{0\}$ r. dim Nul $A=0$
5.1	The eigenvalues of a triangular matrix are the entries on its main diagonal.
IMT – the END!!	Let A be an n x n matrix. Then A is invertible if and only if:
	s. The number 0 is <i>not</i> an eigenvalue of A
5.2	If $\mathbf{v}_1, \ldots, \mathbf{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ of an n x n matrix <i>A</i> , then the set { $\mathbf{v}_1, \ldots, \mathbf{v}_r$ } is linearly independent
5.3 Properties of determinants	 Let A and B be n x n matrices. a. A is invertible if and only if det A != 0 b. det AB = (det A)(det B) c. det A^T = det A d. If A is triangular, then det A is the product of the entries on the main diagonal of A e. A row replacement operation on A does not change the determinant. A row scaling also scales the determinant by the same as the scalar factor
5.4	If n x n matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities)
5.5 The digitalization theorem	An n x n matrix <i>A</i> is diagonalizable if and only if <i>A</i> has <i>n</i> linearly independent eigenvectors.
	In fact, $A = PDP^{-1}$, with D a diagonal matrix, if and only if the columns of P are n linearly independent eigenvectors of A . In this case, the diagonal entries of L are the eigenvalues of A that correspond, respectively, to the eigenvectors in P .
5.6	An n x n matrix with <i>n</i> distinct eigenvalues is diagonalizable

5.7	Let A be an m x n matrix whose distinct eigenvalues are $\lambda_1, \ldots, \lambda_p$
	 a. For 1 <= k <= p, the dimension of the Eigenspace for λ_k is less than or equal to the multiplicity of the eigenvalue λ_k b. The matrix <i>A</i> is diagonalizable if and only if the sum of the dimensions of the distinct eigenspaces equals <i>n</i>, and this happens if and only if the dimension of the eigenspace for each λ_k equals the multiplicity of λ_k c. If <i>A</i> is diagonalizable and B_k is a basis for the eigenspace corresponding to λ_k for each k, then the total collection of vectors in the sets B₁,, B₁ forms an eigenvector basis for Rⁿ